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Abstract

A conventional rubber elasticity equation based on the inverse Langevin function, combined with a yield stress (Y0) has been used for the
purpose of studying published tensile stress–strain curves for thermoplastic elastomers. In order to simplify the calculation a Pade approx-
imation has been employed [Cohen A. Rheol. Acta. 1991;30:270] for the inverse Langevin function which leads to the following equation,
relating f, the nominal or engineering stress, to the extension ratiol :

f � Y0=l 1 �Cr=3��l�3 2 l2
=n�=�1 2 l2

=n�2 �1=l2��3 2 1=ln�=�1 2 1=ln��:
When suitable values of the parameters are selected the equation may be used to model nominal stress–strain curves for the new ultralow
density polyethylenes, ethylene vinyl acetate copolymers and SBS block copolymers. The parametersCr andn selected in this way represent
identifiable physical entities;Cr the initial modulus andn1/2 the limit of extensibility. HoweverCr does not increase with temperature as with
a conventional rubber, but declines as the temperature is raised. With the polyethylenes this may be related to the gradual melting of the
crystals which are believed to act as cross links [Bensason S, Stepanov EV, Chum S, Hiltner A, Baer E. Macromols 1997;30:2436]. However,
with an SBS block copolymer the reason for the fall inCr and the rise inn are not clear. Generally, for instance when the temperature is
reduced and the materials become stiff,Cr will increase andn decrease. However when it is plotted against crystallinity with the ultralow
density polyethylenes,n does not followCr but shows a minimum at a crystallinity of 30% after which it appears to increase. With
polyethylenesn is more sensitive to molecular weight thanCr and gives a linear Flory plot forn 1/2 against 1/T at 08C. At 258C the values
of n obtained are very high and when the molecular weight falls to 32 000 and the stress–strain curve is found to follow a Gaussian equation.
This supports the mathematical requirement that the equation reduces to a Gaussian form whenn is very large. The same result can be
predicted from a series approximation suggested by Treloar.q 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Recent developments in the interpretation of mechanical
behaviour in thermoplastics have increasingly employed
concepts related to the conformation of the polymer chain
[1–5]. In applying this principle to solid plastics it is
common to employ the hypothesis of Haward and Thackray
[4] that elastic and viscous forces may be modelled in paral-
lel. This is especially true of the glassy polymers where
Boyce and co-workers [5,6] have provided a consistent
account of large strain properties in terms of entropic
(chain straightening) and viscous (interchain friction) prop-
erties. For this purpose they used non-Gaussian chain statis-
tics derived from an equation based on an inverse Langevin
function described by Treloar in ‘‘The Physics of Rubber

Elasticity’’ [7]. Their treatment makes it possible to repre-
sent not only deformations measured in tension, but also
those resulting from the application of other types of stress
such as compression and shear.

Obviously the employment of rubber elasticity theory
outside the specific circumstances for which it was devel-
oped raises serious questions. For example, the classical
theory of rubber elasticity is predicated by the existence
of long polymer chains where bond rotation occurs freely
without significant energy barriers or frictional interaction
between the moving chains. A further requirement is that the
polymer chains are linked by covalent bonds unaffected by
changes in temperature in the range of interest. Calculations
based on the configurational entropy of the chains then
generate equations, which describe the well-known charac-
teristics of reversible rubber elasticity including the propor-
tionality of stress to absolute temperature.

At this point problems arise when equations appropriate
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to conventional rubbers are applied to thermoplastics or
thermoplastic rubbers where for example the measured
stresses during deformation decline as the temperature is
increased and where the transmission of forces between
polymer molecules occurs through ‘‘entanglements’’,
viscous interaction or through isolation in a second phase.
Nevertheless it is reasonable to assume that the variations in
entropy which accompany changes in the configuration of
the polymer chain will be controlled by factors similar to
those in a rubber. Models for the process may therefore be
taken from one of the several models, which have been used
in the theory of rubber elasticity.

Interest in this field has recently grown following the
discovery of new catalysts for ethylene polymerisation
capable of providing ultra low density ethylene copolymers
with a more regular structure than have hitherto been avail-
able [8]. These have similarities with the thermoplastic
rubbers based on block copolymers of styrene with isoprene
or butadiene which have already been known for some time
[9]. Recently an article of particular importance was
published by Bensason et al. [10], who reported tensile
experiments with rubber-like ultralow density polyethyl-
enes, which could be accurately modelled by a rather
complex rubber elasticity equation employing the additional
concept of slip links [11,12] (see Appendix B).

The present work aims to show that these results together
with those from ethylene vinyl acetate copolymers and the
styrene–diene block copolymers may be represented by a
model for large elastic deformations in tension which
employs the non-Gaussian inverse Langevin relation. A
further objective is to emphasize the importance of the
long neglected limit in the extensibility of polymeric mate-
rials. Finally the possible implications of the conclusions
reached will be discussed in relation to the introduction of
entropy based contributions to theories for the deformation
of crystalline thermoplastics.

2. The application of the non-Gaussian equation to
thermoplastic rubbers

Non-Gaussian chain statistics for rubber provide for a
limited extension of the chain between cross links and
leads to the following equation ([7] Eq. 6.19). In this equa-
tion L21 represents the inverse Langevin function (see
Appendix A).

Nominal�or engineering� stress� f

� �NkTn1=2�=3�L21�l=n1=2�2 l23=2L21�1=�ln�1=2��; �1�
wherel is the extension ratio in tension,N the number of
effective crosslinks per unit volume, andn the number of
flexible units between cross links. HereNkT is equivalent to
Treloar’s rubber modulusG for which the designationCr is
used by Boyce in Ref. [6] and subsequently followed in this
article. It is also equivalent to the strain hardening modulus

for plasticsGp when this is expressed as a Gaussian equation
for a solid thermoplastic [13].

Complications arise over the calculation of the operator
L 21, where L(x) � (coth x 2 1/x) and L21 refers to the
inverse function. However, according to Cohen [14] the
inverse function may be accurately approximated by a
Pade equation, viz.

L21x� x�3 2 x2�=�1 2 x2�: �2�

As this is more easily calculated than the inverse Langevin
expression and much simpler than the Taylor series reported
by Treloar (Eq. (B.1) see Appendix B), it was checked
against the Langevin relation as shown in Fig. 1. The result
is the same as that published by Cohen. The Pade expression
clearly gives a very good approximation and this will be
used here. In another study to be published later both
Eq. (1) and the Pade approximation have been applied
directly to the same experimental results and good agree-
ment has been obtained. When Eq. (2) is substituted in Eq.
(1) we obtain

f � �Cr=3���l�3 2 l2
=n�=�1 2 l2

=n�

2 �1=l2��3 2 1=ln�=�1 2 1=ln��: �3�

Whenn is large this reduces to the Gaussian equation and
becomes

nominal stress� f � Cr�l 2 1=l2�: �4�

In applying the non-Gaussian equation to the experimental
results with the thermoplastic elastomers, account has to be
taken of the inability of these two constant equations to
describe the initial stage of the deformation process as
with the more complex equation used by Bensason et al.
[10] so that it has to be displaced upwards by a further
disposable constantY0 treated as yield stress as shown in
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Fig. 1. The results of Cohen [14], using the Pade approximation, are
recalculated and confirmed in this figure.



Eq. (5).

f � Y0=l 1 �Cr=3��l�3 2 l2
=n�=�1 2 l2

=n�

2 �1=l2��3 2 1=ln�=�1 2 1=ln��: �5�
With rubbery materials the value ofY0 is generally small

compared with the stresses measured at high deformations.
However with polyethyleneY0 increases with crystallinity
and when it becomes sufficiently large, as with conventional
polyethylenes, there is a fall in nominal stress with increas-
ing strain which gives rise to necking in accordance with the
Considere condition.

Finally, it should be noted the when expressed in terms of
true stress (s true) the Gaussian Eq. (4) becomes

strue� Cr�l2 2 1=l�; �6�
to which the yield stress may be added when appropriate
[13].

In reproducing points from published curves the figures
are first enlarged and then lines are drawn connecting upx
andy ticks, respectively. Coordinates are then obtained by
measuring the displacements within the small rectangles
drawn on the graph.

3. Different types of measurement used for stress–strain
curves

Several different methods of measuring tensile stress–
strain curves have been reported in the literature. Those
used in the results quoted here are summarised as follows.

(A) The simplest method is the nominal (or engineering)
stress–strain curve where the test piece is extended at a
constant rate and the force measured in a conventional tens-
ometer is related to the original length and cross section. In
the absence of an appreciable yield stress elastomers and
plastics generally will extend uniformly without necking.
This method, as practised in Refs. [21,22] raises certain

problems. In the first place, a very high initial strain rate
(10 min21) was used so that the isothermal conditions may
not have to been maintained, particularly with the higher
crystalline materials. This uncertainty inevitably raises
doubts about the variation onn with crystallinity as shown
in Fig. 3, where a dotted line has been drawn. There might
also have been some problems with the uniformity of the
deformation in the test piece which could lead to somewhat
higher measured value forCr. These deficiencies were
eliminated in the work described in Ref. [10]. Measure-
ments by method A are all that is available for the styrene
block copolymers.

(B) Method A is improved by the use of benchmarks to
record the deformation of a limited length, generally at the
centre of the test piece, to eliminate errors due to end effects.
A good way of doing this is to deposit a rectangular pattern
on the test piece by the evaporation of a deposit through a
grid [10,15] and following strains through the deformation
of the grid. This gives a true nominal stress–strain curve
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Fig. 3. The effect of crystallinity on the non-Gaussian deformation para-
meters. Crystallinity here is measured by volume gms or ccm of crystal per
100 ccm (crystal density 1.00). With vinyl acetate copolymers wt.% values
given by DSC measurement have been converted to a volume by introduc-
ing a small correction based on the density values for polyethylene.

Fig. 2. The continuous lines are reproduced from the work of Bensason et al. [21,22] and the points calculated from Eq. (5) using the parameters given inTable 1.



measured at a constant rate of extension. It is quite satisfac-
tory for rubbers where the stress is relatively insensitive to
the rate of strain which, of course falls slowly during the
test. Under these conditions nominal stresses may be
converted to true stresses by assuming constant volume
and multiplying byl .

(C) The best procedure, particularly for materials which
do not show uniform deformation, is the measurement of
true stress–strain curves at constant true strain rate. This
method generally uses an hourglass (waisted) test piece
and has been described in detail by G’Sell and Jonas
[16,17], Hope et al. [18] and Hiss and Strobl [19].

3.1. The application of the non-Gaussian equation to
experimental results

In this section published tensile stress–strain curves are
evaluated for ethylene olefin copolymers, ethylene vinyl
acetate copolymer and for styrene–diene block copolymers.
It will be followed by discussion wherein the significance of
the results will be considered.

3.2. Ultra low density ethylene–octene copolymers

3.2.1. The effect of octene content
Following the discovery of new types of polymerisation

catalysts a series of ethylene–octene copolymers have been
marketed by the Dow Chemical Co. under the trade name
‘‘Insite’’. These are all polymers with low densities and low
levels of crystallinity. They have low or zero yield stress and
may be regarded as thermoplastic rubbers analogous to
those made from styrene and butadiene. Their introduction
further increases the wide range of ethylene polymers
already available and for this reason Bensason et al. [20]
have reclassified the whole range of polyethylenes on a
density and crystallinity basis into four types, viz. I –IV.
Materials classed as Type I have densities below 0.89 and
Type II extend from 0.89 to 0.905. In terms of the previously
available materials both may be regarded as ultra low-
density copolymers. They form an important part of the
present study.

For these polymers their chemical composition is defined
by the proportion of the comonomer. Details of this and of
other Type I and II materials which are the first polymers to
be studied here are given by Bensason et al. [21,22] and are
reproduced in Table 1. Type A stress–strain curves for these
polymers were also measured in an Instron machine at

ambient temperatures and these are plotted as lines in Fig.
2 where they are accompanied by points calculated using the
non-Gaussian Eq. (5). This demonstrates the applicability of
the equation and provides values of the parametersCr andn
which are plotted in Fig. 3, together with some results
from ethylene–vinyl–acetate copolymers which will be
presented later. The continuous rise in the modulusCr
corresponds with an increase in cross linking with increas-
ing crystallinity but the rise inn at high crystallinities seems
anomalous and needs confirmation, as already explained. As
already noted high values ofn are associated with Gaussian
stress–strain plots.

A specification of these polymers, together with the para-
meters for Eq. (5) are listed in Table 1.

3.2.2. The effect of temperature
In their later work Bensason et al. [10] have made a

systematic study of a Type I polyethylene designated as
CGCT 87. Measurements on nominal stress–strain curves
were made using the improved method B at a series of
controlled temperatures. They demonstrated that their
results were very well modelled by the equation given in
Appendix B. In this section we continue to investigate the
capability of Eq. (5) to represent the same results over the
range of large deformations wherel . 1.5–2.0. The result-
ing graphs are given in Fig. 4 and listed in Table 2. Eq. (5) is
clearly able to represent the curves showing the effect of
temperature in Ref. [10]. The question of the possible value
of a simple and apparently more primitive model, when a
more comprehensive treatment has already been published,
will be included in Section 4.

From the curves in Fig. 4 values ofCr and n may be
derived and these are plotted against temperature in
Fig. 5(a). It is clear that at the higher temperatures the
value of n increases with the consequence that a longer
linear section is observable in the nominal stress–strain
curve abovel � 3.5. This again indicates an approach to
Gaussian behaviour.

3.2.3. The influence of molecular weight
In their article Bensason et al. [10] also present results for

polymers of five different molecular weights viz., 20 000
(20), 26, 32, 37 and 57 K, measured over a range of
temperatures. The results for three of the five curves
measured at 08C are given in Fig. 6(a) together with the
calculated points and the associated parameters plotted in
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Table 1
Specification for octene copolymers [22]

Designation Comonomer content (mol%) Density (g/cm3) Melt index (g/10 min) Yo (Eq. (5)) (MPa) Cr (MPa) n

1B 14.6 0.865 0.5 1.50 0.51 270
IT 11.8 0.874 0.5 1.7 0.84 168
I 8.5 0.887 1.0 3.9 1.29 117
II 5.3 0.901 1.0 6.9 1.71 120
III 3.3 0.913 1.0 9.2 2.14 155



Fig. 5(b). It will be seen that the changes in molecular
weight have a large effect onn but only a small effect on
Cr. Indeed because of the difficulty of separating the five
curves at low strains, small differences between them are not
significant. However direct examination of the enlarged
copies supports the conclusion that there is indeed a small
increase in slope in the critical range froml � 2.5–4 with
higher molecular weights. This is unexpected as Bensason
et al. report a constant slip-link modulus and a falling cross
link modulus under the same conditions. The curves for 20
and 57 K are repeated in Fig. 6(b) as Gaussian plots. It will
be seen that the lower molecular weight polymer with a
higher value ofn gives a longer linear section and a value
of the slopes closer to the result from Eq. 5. Whenn is low it
is clearly possible for an apparently linear Gaussian plot to
provide a modulus well aboveCr because the rise in stress
due to limited extensibility is included in the Gaussian line
(see Fig. 14 and Section 4).

Measurements on 57, 37, and 32 K at 258C are shown in
Fig. 7. Both the two higher molecular weight polymers are
fitted by the non-Gaussian equation but at 37 K the value of
n was very high. With the 32 K polymer however there is no
indication of a limit of extensibility and the stress–strain
curve exhibits gaussian behaviour. Bensason et al. showed
that at lower molecular weights and higher temperatures the

curves may turn downwards and ascribe the decline in stress
to the breakdown of the underlying network.

3.3. Vinyl acetate copolymers

Vinyl acetate can be copolymerised with ethylene to give
EVA copolymers which, with the relatively high propor-
tions of vinyl acetate shown in Table 3, fall into the crytal-
linity range associated with the ultra low density
polyethylenes described earlier.

True stress–strain curves for these materials, measured
by method C, have been published by Hiss and Strobl [19],
in the form of true stress against Hencky strain (lnl ). These
have been transformed to show the dependence of nominal
stress againstl . As true stress is very much larger than the
nominal stress at high strains they-axis for nominal stress
covers a smaller range of stress which has the effect of
widening the visible difference between stresses for the
different materials at low strains. This is not entirely asso-
ciated with any improvement in the accuracy of reproduced
graphs at low strains, which is limited by the small measur-
able distances in the published results. This particularly
affects the postulated yield stress. Nevertheless the curves
are well fitted by Eq. (5) (Fig. 8) so that the values of the
parametersY0, Cr and n define the curve quite well. For
example, as with the octene copolymers,Cr increases
with crystallinity and, more surprisingly,n also increases
over the same 30% range again as with the octene copoly-
mers. That the results do not coincide completely is not
surprising as both copolymers contain appreciable quanti-
ties of the respective comonomers (Tables 1 and 3), so that
differences may be expected other than those simply related
to the effect of comonomer on crystallinity.

3.4. Styrene–diene triblock copolymers

From the previous results it will be seen that the ultra low
density polyethylenes and the vinyl acetate copolymers are
rubber like materials whose initial modulus depends on the
proportion of the crystalline phase. This, as already pointed
out by Bensason et al. [10], provides multifunctional junc-
tions acting as physical cross links in a manner analogous to
other thermoplastic elastomers. It therefore seemed appro-
priate to apply the treatment described earlier to examples of
the styrene–diene triblock polymers which have now estab-
lished themselves as commercial products The selected
polymers include SBS (styrene–butadiene–styrene) and
SIS (styrene–isoprene–styrene) triblock copolymers.

Although there are a great number of measurements in the
literature, the evaluation of these materials raises a certain
difficulty. It has been found that the phase (domain) struc-
ture of the samples for testing may be strongly affected by
the method of preparation, as, for example the type of
solvent used for casting a film [24,25] or the direction of
extrusion as found by Odell and Keller [26]. To minimise
this difficulty the results selected for study are all from
compression moulded test pieces.
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Fig. 4. Curves reproduced from Bensason [10] and points calculated from
Eq. (5) using the parameters shown in Table 2. Polymer specification
Comonomer 12.3%, Melt Index 0.8 g/10 min.), Crystallinity 12%, Density
0.873 g/cm3.

Table 2
Deformation parameters for CGCT at different temperatures (Bensason
[10])

Temp (8C) Y0 (MPa) Cr (MPa) n

0 2.9 0.96 66.5
10 2.8 0.72 82
25 1.9 0.57 122
35 1.7 0.465 218
45 1.2 0.36 950



3.5. The effect of the styrene–butadiene ratio on the tensile
properties of SBS copolymers

The effect of the block weight ratio of SBS triblock poly-
mers on their stress–strain curves has been reported by
Morton et al. [27] and Morton [24]. The former prepared
a series of copolymers with different compositions in which
all the blocks were of uniform size, according to normal
practice. In addition some samples were made in which

the molecular weight of one of the segments contained
units of different length without affecting the overall
styrene–diene ratio. To measure the effect of composition
SBS copolymers with a 20, 30 and 40% styrene were sythe-
sised and tested. Following the same procedure as before
their results are reproduced as continuous lines in Figs. 9
and 10, and fitted by filled points calculated using Eq. (5).

It will be seen that each of the curves can be represented
by the model although the closest match is achieved with the
30% styrene copolymer. The parameters of the equation
also change in the expected way, i.e.Cr increases andn
decreases with a higher styrene content. Both changes
reflect stiffening of the material.

3.6. The effect of temperature

The apparently anomalous influence of temperature on
the mechanical properties of SBS copolymer has already
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Fig. 5. Factors affecting the parameters of the non-Gaussian equation: (a)
the effect of temperature on the non-Gaussian parameters; (b) the effect of
molecular weight on the non-Gaussian parameters. Under these conditions
both parameters move in opposite senses, corresponding with a softening of
the polymer at higher temperatures and lower molecular weights. (c) The
effect of molecular weight on the limiting strain. The value ofn1/2 is linear
with 1/M.

Fig. 6. (a) Lines from Bensason et al. [10] and points calculated from Eq.
(5) using the parameters shown. As these polymers have narrow molecular
weight distributions weight and number averages should be the same. (b)
Gaussian plots for polymers of different molecular weight (08C). These are
the same results as in (a) replotted as true stress–strain curves against the
Gaussian function�l2 2 1=l�. The increase inn at low molecular weights
(Fig. 5(b) and (c)) extends the linear Gaussian range to higher strains.
However these lines although apparently quite straight are affected by over-
lapping effect derived from the limit of extensibility (Fig. 14(a) and (b)) so
that the slopes are higher than the values ofCr given on Fig. 6(a).



been noted. The increase in modulus with temperature is not
observed, as the stress required for deformation falls as the
temperature is raised [28–31]. The latter, whose results will
be quoted here used a commercial SBS copolymer (Kraton
101) with a styrene content of 30.3% by weight. Tensile
stress–strain curves were than measured at240, 0 and 408C
and these are reproduced in Fig. 11 together with points calcu-
lated according to Eq. (5). As before, satisfactory fits are
obtained which seem to improve at lower temperatures and
the parametersCr andn move in opposite directions. The
value ofCr increases andn decreases as the temperature is
reduced. It is also apparent thatCr changes less thann and
the productCr·n1/2 appears to be approximately constant. It
is perhaps surprising that in this case there is no evidence of
an increase inCr with temperature, as the styrene domains,
which supply the equivalent of cross links, should be stable
over the temperature range employed.

3.7. Styrene–isoprene–styrene copolymers

Morton et al. [18] prepared 25% styrene SIS copolymers

in two ways: one by the regular procedure to give a uniform
composition; and a second method where a staged addition
procedure was used to provide the isoprene centre block
with a hexamodal distribution of molecular weights in a
blend with the same overall proportion of styrene. Stress–
strain curves for the two materials are given in Fig. 12.
Again Eq. (5) gives a series of points which closely follow
the line measured for the material with the uniform block
structure. However the results for the hexamodal polymer,
as shown by the dotted line have stresses well below those
for the regular material at high strains. This polymer also
has a lower tensile strength so that it is not possible to follow
the curve to the point where the existence and value of a
limiting strain can be properly demonstrated. It would, of
course, have to exceed the value for the regular polymer and
this would extend the Gaussian stage.

It may be noted that the even for the regular isoprene
copolymer the value of the limiting strain determined byn
is considerably greater than that for an equivalent SBS
copolymer.

4. Discussion

4.1. The use of the non-Gaussian and slip-link equations to
model large deformations

In the foregoing presentation it has been shown that the
non-Gaussian rubber elasticity equation can be used
successfully to model large tensile strains in several thermo-
plastic rubbers when an undefined yield stress is introduced
as a disposable constant. With the ultra low density poly-
ethylenes Bensason et al. [10] have demonstrated that the
rather complex ‘‘slip-link’’ equation given in Appendix B,
which employs an additional physically defined parameter,
can be used to model the whole stress–strain curve includ-
ing the initial stages. Both theories generate a limit of exten-
sibility which relates toa in the slip-link theory and ton in
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Fig. 7. Very high values ofn are obtained with the result that the 32 K
polymer gives a long Gaussian plot without evidence of a limit of extensi-
bility (parameters shown).

Fig. 8. Lines reproduced from Hiss and Strobl [19] and points calculated
from Eq. (5).

Fig. 9. Stress–strain curve for a block copolymer designated SBS 1 by
Morton et al. [27]. The points are calculated from Eq. (5) as before.



the non-Gaussian equation (n1/2 � lmax). Both equations
revert to the conventional Gaussian forms under certain
conditions, i.e. for the non-Gaussian equation whenn and
thereforelmax are very large, and for the slip-link equation,
when the parametersh anda approach zero. The condition
a � 0 is essentially equivalent ton becoming infinite. The
slip-link equation has the advantage of offering a compre-
hensive coverage of the whole deformation process while,
however, the non-Gaussian treatment offers a rather simple
semi-empirical relation describing the large deformation
process in terms of intuitively intelligible parameters. Par-
ticularly the limiting strain represented byn1/2 appears to
represent a clear and measurable physical entity.

In their discussion Bensason et al. [10] point out that the
slip links model a yield like process which they illustrate by
the reversible detachment and attachment of crystallisable
chain segments. Such rearrangements could help to increase
configurational entropy of the polymer chains in the early
stages of deformation and so to reduce the measured modu-
lus. However, if the detachments were permanent or if some
of the crystals were broken up there would be a difference
between the first and subsequent deformations of the same
test piece, which would cease to be truly reversible.

Measurements of this type have not, so far, been recorded
for the ultra low density polyethylenes, but the effect is well
known with the SBS block copolymers especially with high
proportions of styrene. For example at 40% styrene content
(by weight) Fischer and Henderson [29] observed marked

hysteresis effects while Smith and Dickie [31] with a 30%
styrene polymer found a significant softening after the first
one or two deformations while after 3–4 cycles the process
became reversible. Even with only 20% styrene small
hysteresis effects were observed by Childers and Krauss
[32].

In any case, as pointed out by Bensason et al. [10], as
crystallinity increases in the margin between Type I and II
polyethylenes [20], lamellar crystalline structures appear
and the characteristic feature of a yield process are
observed.

More generally the question arises as to how entropy
changes are to be introduced into the theory of unconven-
tional rubbers. Bensason et al. propose, very convincingly
that the changes of elasticity with temperature which they
observe are related to demonstrable changes in crystallinity.
However it seems more difficult to explain in this way the
changes observed by Smith and Dickie for SBS between
240 and1408C although it should be noted that the molec-
ular weight of their end blocks (11 000) was well below the
‘‘entanglement molecular weight’’ of polystyrene, or the
molecular weight of the material as normally used for
moulding purposes.

It is felt that the results obtained encourage the evaluation
of different rubber entropy equations for use with unconven-
tional rubbers and hard thermoplastics as practised by
Boyce and Arruda [38] for glassy polymers, and for thermo-
plastic rubbers including the ultra low density polyethylenes
by Bensason et al. [10]. The results can then be compared
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Table 3
Specification of vinyl acetate copolymers

Grade VA (% by weight) Melt index (gm.10 min) Crystallinity (%, [19])

Exxon 0012 12.0 0.30 38
Exxon 0018 17.5 0.37 32
Exxon 00328 27.0 3.0 26

Fig. 10. The top curve represents the line drawn by Morton et al. [27]
through the results for the two copolymers SBS 5 and 8, both with 40%
styrene but with different overall molecular weights. The bottom curve was
also reproduced from Ref. [27]. All the points were calculated from Eq. (5).

Fig. 11. From the work of Smith and Dickie [31]. The polymer is a
commercial product Kraton 101 with a measured styrene content of
30.3% by weight. Large changes in bothn and Cr occur at quite low
temperatures.
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Fig. 12. The isoprene centre block gives a higher values ofn than the SBS copolymers. The dotted line represents a copolymer with the same average
proportion of isoprene but with a herogeneous centre block made by a six stage polymerisation procedure [27].

Fig. 13. (a) Gaussian plot for a high density low molecular weight polyethylene. This material gives a nearly straight line up tol � 12, (Mn� 6 × 103, Mw �
56 × 103, density� 0.96); (b) most medium and high density polyethylene show long linear regions in a Gaussian plot but the ultrahigh molecular weight
material has marked curvature and which can only be fitted by the non-Gaussian equation. (Mn� 3 × 104, Mv� 1.4× 106 (near toMw), density 0.93, Branching
1.8/1000 C atoms). (Data from Meinel and Peterlin [34,35] and Ref. [13].)



with those from the conventional Gaussian and non-Gaus-
sian equations used here.

4.2. Factors affecting the deformation parameters of the
non-Gaussian model

4.2.1. Effect of crystallinity
According to rubber elasticity theory, from which it is

derived, the quantityn in the non-Gaussian equation repre-
sents the number of flexible connections between cross
links, while Cr is equated withNkTwhereN is the number
of cross links. ThusnN should be constant and equal the
total number of flexible units in the system, as pointed out
by Arruda et al. [33] for glassy polymers.

For semi-crystalline polymers the constancy ofnN is
hardly to be expected but if, for instance, the material
becomes softer it would be logical to expect the two para-
meters to change in opposite senses, i.e. forN to decrease
andn to rise. For the most part this seems to apply to the
present results but when the parameters are plotted against
the percent crystallinity for the polyethylenes the expected
trends occur only up to a crystallinity of 30%. Above this
level n appears to increase again as also is the case for the
vinyl acetate copolymers (measured by method C). This
crystallinity level corresponds to the middle of the range
suggested for Type II polymers and marks the transition
from rubberlike to solid polymers [20]. With the polymers
described in Fig. 3n does not reach a very high value, but if
the trend were to continue at higher crystallinities the
stress–strain curves would assume an increasingly Gaussian
form. There is now extensive evidence that this is indeed the
case and many examples of linear Gaussian plots have been
reported by G’Sell and Jonas [7], Haward [13] and Hillman-
sen et al. [23]. Further, experiments by Meinel and Peterlin
[34,35] with low molecular weight high-density polyethyl-
ene and with ultrahigh molecular weight medium density
polymer illustrate this point. True stress–strain curves with
the low molecular weight material give a linear Gaussian
plot even up to al value as high as 12 (Fig. 13(a)). With the
ultrahigh molecular weight material marked curvature is
found in a similar plot which can only be represented by
the non-Gaussian Eq. (5) with high values ofCr and low
values ofn (Fig. 13(b)). This reflects the effect of molecular
weight onn (discussed later).

If the conventional rubber elasticity formula [36] is used
to estimate the molecular weight (Me) of the active chains
between cross links, we obtain

Me � rRT=G� rRT=Cr:

We can derive the number of carbon atoms associated with a
crystalline cross link asMec/14r , wherec is the crystallinity
in g/cc andr the density in the same units (as in Ref. [10]).
Then from Fig. 3, neglecting the small intercept, we obtain
Cr � 4.9c MPa. This leads to a value of 35 C atoms per
cross link which corresponds to a length of 44 a.u. [37]
somewhat higher than the 19–30 a.u. proposed by Bensason

et al. [10]. However the good linearity of the plot ofCr
againstc would suggest that this quantity may not vary
with the comonomer content to the extent they propose.

4.2.2. Effect of molecular weight
Bensason et al. included the effect of molecular weight in

their study of the deformation of low crystalline polyethyl-
enes. However, in comparing these results with other poly-
ethylenes it is important to appreciate that the new ‘‘Insite’’
polymers are reported to have narrow molecular distribu-
tions so that the number and weight averages are approxi-
mately the same and it is not necessary to represent
molecular weight by two figures. This may complicate
comparisons with other products especially where molecu-
lar weight differences are small and distributions wide
though it does not, of course, affect the significance of the
results reported in Ref. [10].

The influence of molecular weight on the parameters of
the non-Gaussian equation at 08C has been presented in Fig.
6(b) and (c). The small differences in the values ofCr at low
extensions made it impossible to separate some of the
curves, so that only three full graphs could be plotted and
even then they were subject to significant error at low
strains. In their discussion of molecular weight effects,
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Fig. 14. The figure shows the contribution of a Gaussian stress (Cr �
1 MPa) and the additional stress due to the inextensibility factor introduced
by the non-Gaussian equation with different values ofn: (a) at low strains;
(b) at high strains.



Bensason et al. concentrate on the measurements of their
cross link modulus (Nc) at higher temperatures in order to
avoid overlap due to high values of the inextensibility factor
a . That this overlap can be very significant is shown in Fig.
6(b) where Gaussian plots are displayed to show how the
length of initial linear section increases with higher values
of n when the full non-Gaussian treatment is not used When
Eq. (5) is applied lowerCr values of are found from which
the overlap is believed to have been removed. So the slight
upward trend ofCr with molecular weight may be signifi-
cant in spite of the errors involved.

The measurement of five complete curves at 08C makes it
possible to derive a dependence ofn on molecular weight
[Fig. 5(c)] which is shown to follow a Flory [38] reciprocal
plot. Interestingly the slip-link treatment leads to a similar
relationship for their cross link modulusNc at higher
temperatures. Both results point to the importance of
chain ends in determining mechanical properties. Finally
the fact that at low molecular weights temperatures above
08C n becomes very large making it possible to show from
experimental results that under these conditions the stress–
strain curve can indeed take on a fully Gaussian form as
show in Fig. 7.

This feature may be directly illustrated from the model as
in Fig. 14(a) and (b). In these graphs the yield stress is
assumed to be either small or zero and the inextensibility
effect is isolated by subtracting the Gaussian contribution
from the calculated stress, i.e. Eq. (4) is subtracted from
Eq. (5). The results are plotted for lower values ofl
Fig. 14(a) and forl values up to 12 in Fig. 14(b). Clearly,
if n is not very high the value ofCr calculated up to
extension ratios no higher than 5 will be affected by overlap
from the inextensibility factor (as shown in Fig. 7). However
when n � 1000 its influence on the deformation stress is
negligible forl , 7. When the yield stress is small, it may
also be noted that when quantityf/Cr is plotted againstl the
resulting curve is entirely determined by the parameter n.

5. Conclusions

1. The application of a conventional elasticity equation can
be simplified by the introduction of a Pade approxima-
tion [14] for the inverse Langevin function.

2. When a small, initial yield stress is added the modified
equation may be used to model stress–strain curves for
thermoplastic elastomers above extension ratios of 1.5–
2.0. Ultra low-density polyethylenes, ethylene vinyl acet-
ate copolymers and SBS block copolymers have been
treated successfully.

3. The three parameters of the equation comprise two
physical entities, an initial modulusCr and an ultimate
extension ration1/2.

4. The polyethylene and the SBS polymers have lower
moduli (Cr) at higher temperatures. With the polyethyl-
enes this decrease correlates with reduced crystallinity

but with the SBS copolymer it occurs at temperatures
where the styrene domains should be stable.

5. Whenn becomes large, the equation becomes Gaussian
in accordance with the literature [7].

6. The quantityn1/2 has been found to follow a Flory type
dependence on 1/M.
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Appendix A

In his presentation of Eq. (1) Treloar [7] notes that at low
values ofl it approximates to a gaussian form. He also
describes a treatment based on an assembly of chains
following an inverse Langevin expression for entropy, in
the form of the series given below [7, eqn 6.22].
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This equation assumes a Gaussian form whenn is large.

Appendix B

The Advanced Rubber Elasticity Equation used by
Bensason et al. [10].

The equation is quoted below.
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The four parameters are as follows—the density of cross
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linked chainsNc, the density of slip linksNs, the slippage
parameterh and the inextensibility parametera .

The conditiona � 0 is equivalent ton becoming infinite
in the non-Gaussian equation. Under these conditions the
second term becomes Gaussian.
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